Tissue engineering scaffold material of porous nanohydroxyapatite/polyamide 66
نویسندگان
چکیده
The aim of the study was to investigate a porous nanohydroxyapatite/polyamide 66 (n-HA/PA66) scaffold material that was implanted into muscle and tibiae of 16 New Zealand white rabbits to evaluate the biocompatibility and osteogenesis and osteoinductivity of the materials in vivo. The samples were harvested at 2, 4, 12 and 26 weeks respectively, and subjected to histological analysis. At 2 weeks, the experiment showed that osteogenesis was detected in porous n-HA/PA66 composite and the density of new bone formation was similar to the surrounding host bone at 12 weeks. The study indicated that three-dimensional pore structures could facilitate cell adhesion, differentiation and proliferation, and help with fibrovascular and nerve colonization. In conclusion, porous n-HA/PA66 scaffold material could be a good candidate as a bone substitute material used in clinics due to its excellent histocompatibility, osteoconductivity and osteoinductivity.
منابع مشابه
Fabrication and characterization of drug-loaded nano-hydroxyapatite/polyamide 66 scaffolds modified with carbon nanotubes and silk fibroin
Nano-hydroxyapatite/polyamide 66 (nHA/PA66) porous scaffolds were fabricated by a phase inversion method. Carbon nanotubes (CNTs) and silk fibroin (SF) were used to modify the surface of the nHA/PA66 scaffolds by freeze-drying and cross-linking. Dexamethasone was absorbed to the CNTs to promote the osteogenic differentiation of bone mesenchymal stem cells (BMSCs). The cell viability of BMSCs wa...
متن کاملModification of Decellularized Goat-Lung Scaffold with Chitosan/Nanohydroxyapatite Composite for Bone Tissue Engineering Applications
Decellularized goat-lung scaffold was fabricated by removing cells from cadaver goat-lung tissue, and the scaffold was modified with chitosan/nanohydroxyapatite composite for the purpose of bone tissue engineering applications. MTT assay with osteoblasts, seeded over the chitosan/nanohydroxyapatite-modified decellularized scaffold, demonstrated significantly higher cell growth as compared to th...
متن کاملPreparation and Characterization of Aligned and Random Nanofibrous Nanocomposite Scaffolds of Poly (Vinyl Alcohol), Poly (e-Caprolactone) and Nanohydroxyapatite
Nanofibrous scaffolds produced by electrospinning have attracted much attention, recently. Aligned and random nanofibrous scaffolds of poly (vinyl alcohol) (PVA), poly (ε-caprolactone) (PCL) and nanohydroxyapatite (nHA) were fabricated by electrospinning method in this study. The composite nanofibrous scaffolds were subjected to detailed analysis. Morphological investigations revealed that the...
متن کاملDevelopment of Novel Biocomposite Scaffold of Chitosan-Gelatin/Nanohydroxyapatite for Potential Bone Tissue Engineering Applications
In this study, a three-dimensional chitosan-gelatin/nanohydroxyapatite (ChG/nHaP) scaffold was successfully fabricated and characterized in terms of swelling, degradation, cell proliferation, cell attachment, and mineralization characterizations. The ChG/nHaP scaffold was fabricated with a mean pore size of 100-180 μm. Our results showed that the physicochemical and biological properties of the...
متن کاملDevelopment of a new pre-vascularized tissue-engineered construct using pre-differentiated rADSCs, arteriovenous vascular bundle and porous nano-hydroxyapatide-polyamide 66 scaffold
BACKGROUND Development of a pre-vascularized tissue-engineered construct with intrinsic vascular system for cell growth and tissue formation still faces many difficulties due to the complexity of the vascular network of natural bone tissue. The present study was to design and form a new vascularized tissue-engineered construct using pre-differentiated rADSCs, arteriovenous vascular bundle and p...
متن کامل